Center for Science of Information

Structural Information: Progress Report Wojciech Szpankowski Purdue University (jeintly with A. Grama, A. Magner, and J. Sreedharan)

Bryn Mawr Howard MIT **Princeton** Purdue Stanford **Texas A&M UC Berkeley UC San Diego** UIUC **University of** Hawaii

Outline

- **1. Science of Information**
- 2. TIMES: Temporal Information Maximally Extracted from Structure
- 3. Structural Compression
- 4. TIMES: Recovering Partial Order
- 5. Experimental Results
 - Synthetic Network
 - Real network
 - Functional Brain Network

What is Science of Information?

- Claude Shannon laid the foundation of information theory, demonstrating that problems of data transmission and compression (i.e., *reliably reproducing data*) can be precisely modeled formulated, and analyzed.
- SCIENCE OF INFORMATION builds on Shannon's principles to address key challenges in understanding information that nowadays is not only communicated but also acquired, curated, organized, aggregated, managed, processed, suitably abstracted and represented, analyzed, inferred, valued, secured, and used in various scientific, engineering, and socio-economic processes.

<u>CSol MISSION</u>: Advance science and technology through a new quantitative understanding of the representation, communication and processing of information in biological, physical, social and engineering systems.

Center's Goals

 Extend Information Theory to meet new challenges in biology, economics, data & social sciences, and physical distributed systems.

Understand new aspects of information (embedded) in

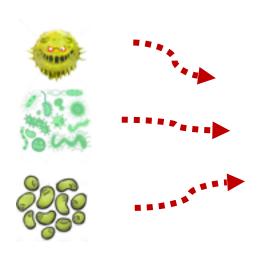
structure, time, space, semantics,

dynamic information, limited resources, complexity, representation invariant information, and cooperation & dependency.

Outline

- 1. Science of Information
- 2. TIMES: Temporal Information Maximally Extracted from Structure
- 3. Structural Compression
- 4. TIMES: Recovering Partial Order
- 5. Experimental Results
 - Synthetic Network
 - Real network
 - Functional Brain Network

Motivation: Infection Spread



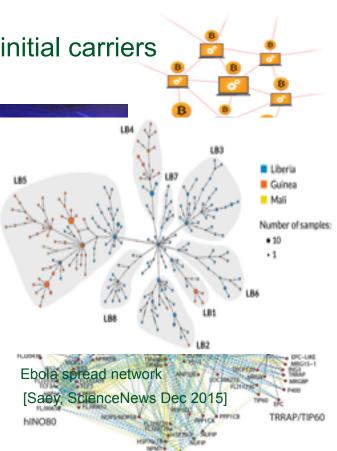
0

Infection network Nodes as patients, edges formed among friends and family.

Only structure info available. Patients admitted not at the order they got infected.

Further Motivation

- Financial transaction networks: flow of capital
- Spread of infectious diseases: origin and initial carriers
- Social networks: spread of information
- Network of biochemical reactions: (protein-protein interaction network)
 Study of the phylogenetic tree
 Cancer proteins tend to be ancient proteir
 [Srivastava et al., Nature 2010]



3 bitcoin

Formulation

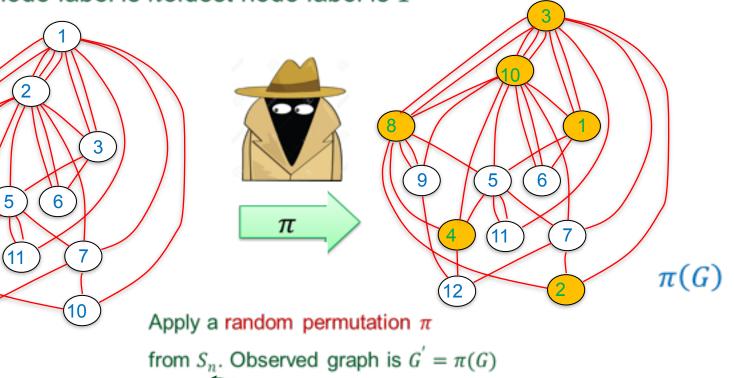
Graph G: set of nodes $[n] = \{1, ..., n\}$

9

G

8

youngest node label is noldest node label is 1



Symmetric group on n letters

Minimax Risk

A node age recovery problem is a tuple

 $(\mathcal{G}_n,\mathfrak{A}_n,d)$ Distortion measure between permutations Random adversary function

Node age estimator is a function $\phi:\mathfrak{G}_n\to S_n$, i.e., it tries to recover π^{-1}

Set of graphs on n vertices ----- Symmetry group on n letters

Minimax risk for a random graph model and a distortion measure

Random graph model

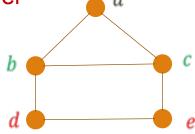
Distortion measure Relabeled graph

$$R_*(\mathcal{G}_n, d) \stackrel{\Delta}{=} \min_{\substack{\phi \\ \varphi \\ \mathsf{Estimator}}} \max_{\substack{\mathcal{A}_n \\ \mathsf{Adversary distribution}}} \mathbb{E}[d(\phi(\pi(G)), \pi^{-1})]$$

Structural Quantities on Graphs

Sets of permutations associated with a random graph model

Aut(G) Automorphism group of the random graph G distributed according to \mathcal{G}_n



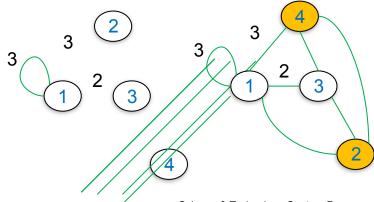
Set of feasible permutations

 $\Gamma(G) \subseteq S_n \qquad \begin{array}{l} \text{Set of permutations } \sigma \text{ such that } \sigma(G) \text{ has} \\ \text{positive probability under the distribution } \mathcal{G}_n \end{array}$

Example of an infeasible permutation: $\pi = (24) \notin \Gamma(G)$

Set of admissible graphs (unlabeled structures)

$$\operatorname{Adm}(G) \stackrel{\Delta}{=} \{ \sigma(G) \ : \ \sigma \in \Gamma(G) \}$$



Lower Bounds on Minimax Risk

0

 $\begin{array}{ll} \mbox{Exact recovery} & d_e(\sigma_1,\sigma_2) = \mathbb{I}[\sigma_1 \neq \sigma_2] \\ \mbox{Approximate recovery} \\ \mbox{(Kendall Tau distance)} & d_a(\sigma_1,\sigma_2) = \sum_{1 \leq i < j \leq n} \mathbb{I}[\sigma_2 \sigma_1^{-1}(i) > \sigma_2 \sigma_1^{-1}(j)] \end{array}$

Theorem:

For a random graph model for which any two positive-probability graphs that are isomorphic are equiprobable, the minimax risk for distortion measures d_e and d_a is Set of admissible graphs

$$R_*(\mathcal{G}_n, d_e) \ge \frac{\mathbb{E}[\log |\operatorname{Aut}(G)|] + \mathbb{E}[\log |\operatorname{Adm}(G)|] - 1}{\log n!}$$
$$= \frac{\mathbb{E}[\log |\Gamma(G)|] - 1}{\log n!}$$
Set of feasible permutations

Center for Science of Information

Erdős–Rényi & Preferential Attachment Models

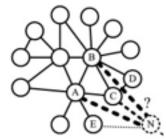
Erdős–Rényi model G(n, p)

Each pair of nodes receives an edge independently, with probability p

Preferential Attachment model $\mathcal{PA}(n,m)$

- At t = 1, G_1 with single vertex (called 1) is created with m self loops
- At t > 1, vertex t joins and makes m connections to existing nodes in G_{t-1}.
- Each of the m connection choice is independent and satisfies

$$\Pr[t \text{ connects to } k | G_{t-1}] = \frac{\deg_{t-1}(k)}{2m(t-1)}$$



Bad News!

Inapproximability result for Erdős–Rényi and preferential attachment graphs

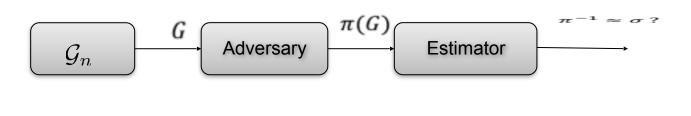
Let \mathcal{G}_n denote either G(n,p) with $p = p(n) \in (0,1)$ or $\mathcal{PA}(n,m)$, with $m \geq 3$. Then we have

 $R_*(\mathcal{G}_n, d_e) = 1 - o(1).$

Furthermore, we have, for approximate recovery in the Kendall τ sense,

 $R_*(\mathcal{G}_n, d_a) = \Theta(n^2).$

ob. of error



Science & Technology Centers Program 13

Further Bad News!!

ML estimation is not a good approach

$$\mathcal{C}_{\mathrm{ML}}(H) = \operatorname{arg\,max}_{\sigma \in S_n} \Pr[G = \sigma^{-1}(H) | \pi(G) = H].$$

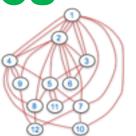
Outline

- 1. Science of Information
- 2. TIMES: Temporal Information Maximally Extracted from Structure
- 3. Structural Compression
- 4. TIMES: Recovering Partial Order
- 5. Experimental Results
 - Synthetic Network
 - Real network
 - Functional Brain Network

Compression of Graphs & Structures

202

G: Labeled graph S(G): Unlabeled graph (structure)



Theorem (Structural entropy for a broad class of graph models)

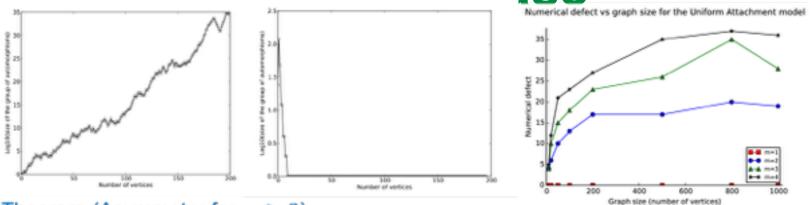
$$H(G) - H(S(G)) = \mathbb{E}[\log|\Gamma(G)|] - \mathbb{E}[\log|\operatorname{Aut}(G)|]$$

From
$$\Pr(G|S(G)) = \frac{1}{|\operatorname{Adm}(G)|}$$
 and $|\operatorname{Adm}(G)| = \frac{|\Gamma(G)|}{|\operatorname{Aut}(G)|}$

Asymmetry of Preferential

0

For m = 1, preferential attachment graph is a tree and is symmetric w.h.p. For m = 2, preferential attachment graph is symmetric with positive probability



Theorem (Asymmetry for $m \ge 3$)

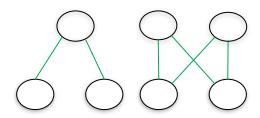
Consider $G \sim \mathcal{PA}(n, m)$ for $m \geq 3$. Then, for some fixed $\delta > 0$,

$$\Pr[|\operatorname{Aut}(G)| > 1] = O(n^{-\delta})$$

Theorem (Estimate for $|\Gamma(G)|$)

We have, for any $m \ge 1$, if $G \sim \mathcal{PA}(n, m)$,

 $\mathbb{E}[\log |\Gamma(G)|] = n \log n + O(n \log \log n).$



Structural Entropy for PAG

Theorem: Entropy of preferential attachment graphs Consider $G \sim \mathcal{PA}(n, m)$ for fixed $m \ge 1$. We have $H(G) = mn \log n + m(\log 2m - 1 - logm! - A)n + o(n),$

where $A = A(m) = \sum_{d=m}^{\infty} \frac{\log d}{(d+1)(d+2)}$.

Let $m \geq 3$ be fixed. Consider $G \sim \mathcal{PA}(n, m)$. We have

$$H(S(G)) = (m-1)n\log n + R(n),$$

Where R(n) satisfies $Cn \leq |R(n)| \leq O(n \log \log n)$ for some nonzero constant C = C(m).

Results of node age recover problem so far are pessimistic

9

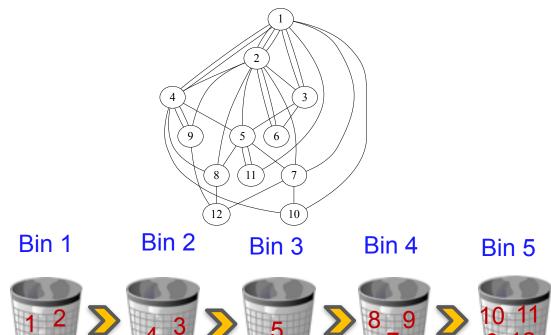
Can we do better ?

Outline

- 1. Science of Information
- 2. TIMES: Temporal Information Maximally Extracted from Structure
- 3. Structural Compression
- 4. TIMES: Recovering Partial Order
- 5. Experimental Results
 - Synthetic Network
 - Real network
 - Functional Brain Network

Partial Orders and Binning

Look for partial orders instead of total orders



Precision and Recall

Recall:

Interpret $\pi^{-1}(v)$ as original label of node v of given graph $\pi(G)$

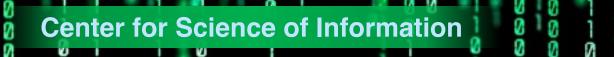
How much we are able to recover?

$$\rho(\phi) = \mathbb{E}\left[\frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} |\{v \in \mathcal{B}_i, w \in \mathcal{B}_j : \pi^{-1}(v) < \pi^{-1}(w)\}|\right]$$
of correct pairs

Precision:

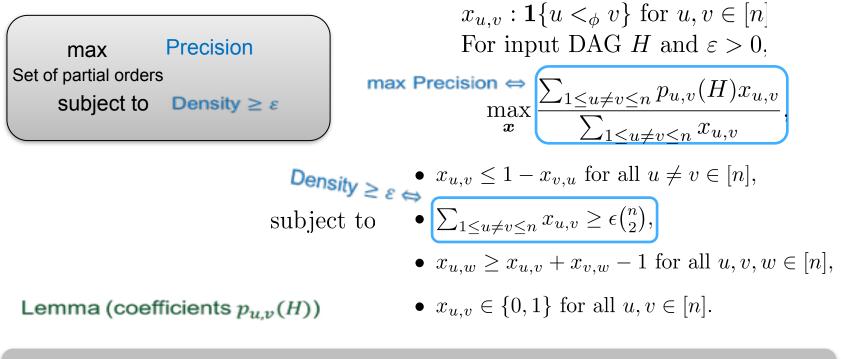
How good are the guessed pairs?

$$\theta(\phi) = \mathbb{E} \left[\frac{1}{K(\phi)} \sum_{\substack{1 \le i < j \le n \\ \text{ # of pairs ordered by bins \\ (excluding those inside bins)}} |\{v \in \mathcal{B}_i, w \in \mathcal{B}_j : \pi^{-1}(v) < \pi^{-1}(w)\}| \right]$$



Constrained Optimization Problem

Different approach: phrase as an integer program.



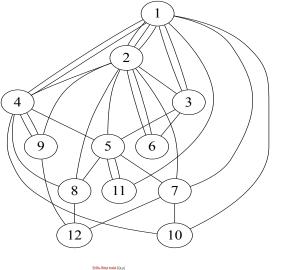
We have $p_{u,v}(H) = \Pr[\pi^{-1}(u) < \pi^{-1}(v) | \pi(G) = H] = \frac{|\{\sigma : \sigma^{-1} \in \Gamma(H), \sigma^{-1}(u) < \sigma^{-1}(v)\}|}{|\Gamma(H)|}$.

Calculating $p_{u,v}(H)$ is equivalent to counting linear extensions of a partial order

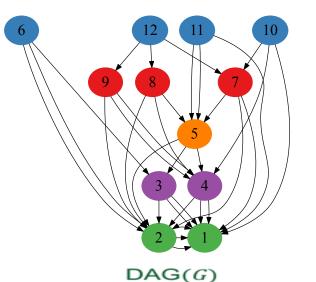
- -- #P-complete in general! [Karzanov & Khachiyan, Brightwell & Winkler]
- -- Approximate counting in polynomial time (Markov chain algorithm).

Science & Technology Centers Program 23

Approximating via Peeling algorithm



9



Bin 4

Each pair of nodes receives an edge independently, with probability

Bin 1

Bin 2

Bin 3

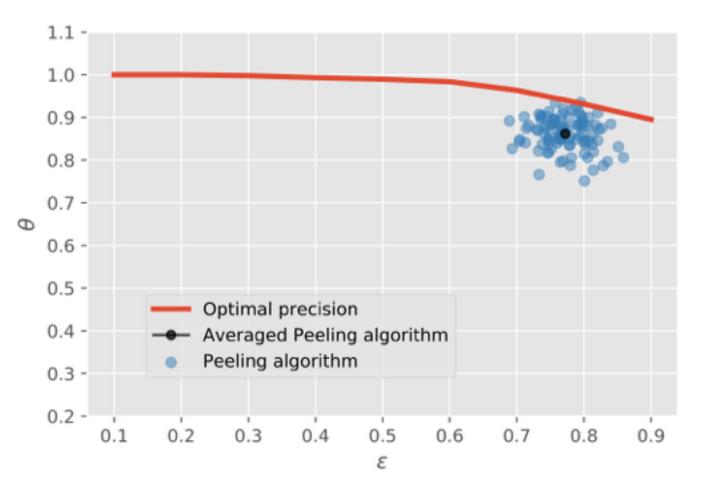
Bin 5

Outline

- 1. Science of Information
- 2. TIMES: Temporal Information Maximally Extracted from Structure
- 3. Structural Compression
- 4. TIMES: Recovering Partial Order
- 5. Experimental Results
 - Synthetic Network
 - Real network
 - Functional Brain Network

Numerical Results

LP relaxation gives an upper bound.



Theoretical Results

Perfect pair

(u, v) is a perfect pair for a graph H, if for uniformly random permutation π ,

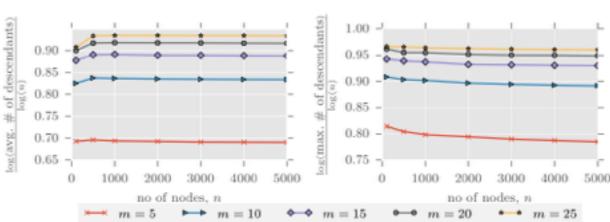
$$\Pr[\pi^{-1}(u) < \pi^{-1}(v) | \pi(G) = H] = 1$$

Theoretical Results

for some function 1 > c(m) > 0.

 X_t : Number of perfect pairs in the graph up to time t.

 $\mathbb{E}[X_t] \le \mathbb{E}[X_{t-1}] + m + O(t^c)$



Center for Science of Information

0000

Experiments: Synthetic Graphs

2

0

n = 5000 5 0.878 0.758 39.86	5000	m	$ heta(R_{ m peel})$	$ ho(R_{ m peel})$	Bins in R_{peel}
	n = 5000	5	0.878	0.758	39.86
D 10 0.917 0.858 68.77		10	0.917	0.858	68.77
R_{peel} : Ranking with bins given 25 0.958 0.936 140.37		25	0.958	0.936	140.37
by Peeling algorithm 50 0.977 0.967 237.97	by Peeling algorithm	50	0.977	0.967	237.97

How robust is the algorithm?

	Technique	$ heta(R_{ m peel})$	$ ho(R_{ m peel})$	Bins in R_{peel}
Uniform	$\mathcal{PA}(n,m=25)$	0.958	0.936	140.37
Attachment	$\mathcal{PA}(n,M), M \sim \mathrm{unif}\{5,50\}$	0.691	0.683	491.81
model —	$\mathcal{UA}(n,m=25)$	0.977	0.967	238.23
	$\mathcal{UA}(n, M), M \sim \mathrm{unif}\{5, 50\}$	0.827	0.823	707.01
_	Cooper-Frieze (Web graph) model	0.828	0.822	619.25

 $\mathcal{P}\mathcal{A} + \mathcal{U}\mathcal{A}$ +addition of edges between existing nodes

Experiments: Real-World Networks

Citation network (ArXiv High Energy Physics): |V| = 7.5K, |E| = 116M

Simple English Wikipedia: |V| = 100K, |E| = 1.6B

Collaboration network (DBLP Computer Science bibliography): |V| = 1.2B, |E| = 5B

 $R_{
m perf}$: Perfect pairs only (nodes with a directed path between them)

	$ heta(R_{ m perf})$	$ ho(R_{ m perf})$	$ heta(R_{ m peel})$	$ ho(R_{ m peel})$	Bins in R_{peel}
Citation network	1.0	0.303	0.708	0.681	423
Simple English Wikipedia	0.8968	0.047	0.624	0.548	903
Collaboration network	0.892	0.336	0.785	0.728	18686

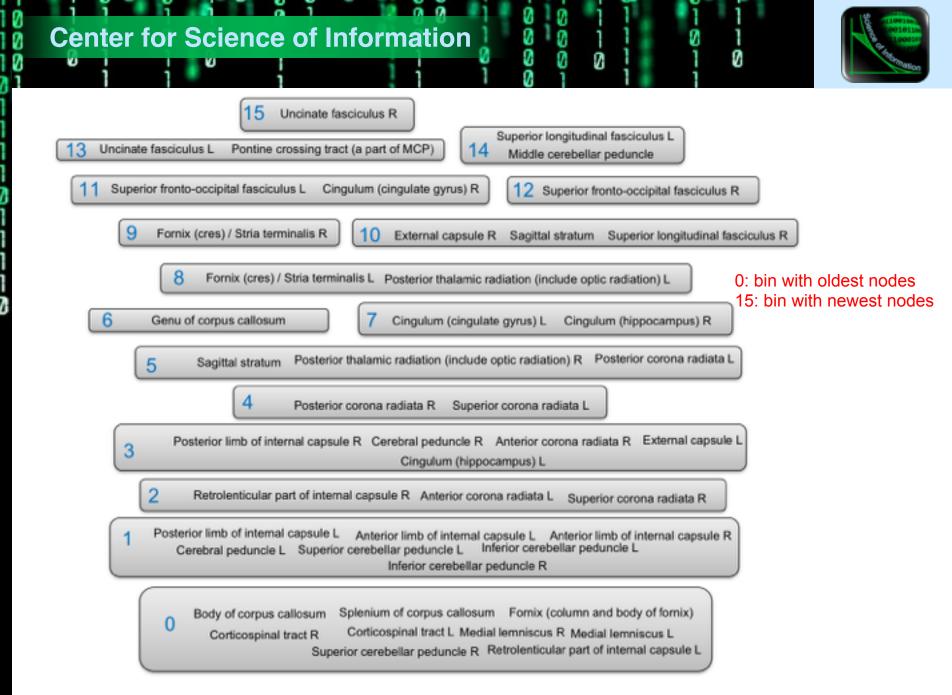
Experiments: Brain Networks

Find age orderings of regions of two different species, based on fMRI images of a same activity.

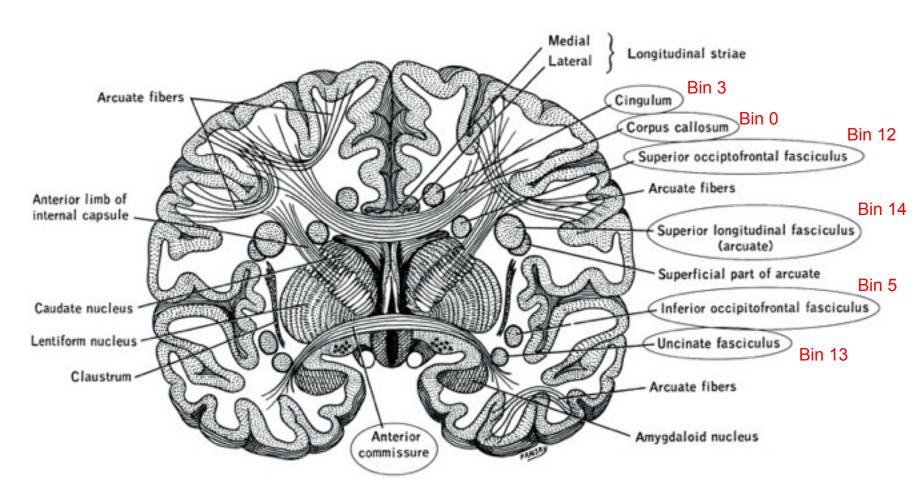
Conjecture: There exists high correlation between the orderings of species evolved from the same genetic parent.

Network formation

- The network has 46 nodes, each of which represents a region in the brain
- An initial network is formed from fMRI images of a human brain in resting state
- Each node here is a voxel and there are 243,648 voxels.
- Each voxel has a time series of data for ~ 350s.
- Pearson correlation coefficient is computed between time series data of each pair of voxels.
- If the correlation > 0.8 we form an edge between the voxels.
- In order to form a network of regions, we make logical OR of the rows and columns in the adjacency matrix of voxel network corresponding to each region.



Center for Science of Information



SSS