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Definition Grid G(n, p)

Bootstrap percolation on a graph G is defined as the spread of activation
according to the following rule, with a given threshold k ≥ 2:

Start with a set A(0) ⊆ V (G) of active vertices.
At each time step, an inactive vertex becomes active if at least k of its
neighbours are active... and remains active forever.
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Definition Grid G(n, p)

Small exercise:
Consider the 2-neighbour bootstrap percolation on n× n grid.

What is the minimal number of sites that can lead to percolation?
Link
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Sites are initially independently declared active with probability q

d =?, k = 2, Aizenman, Lebowitz (1988)
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⇒ qc
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)
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)

d = k = 2, Holroyd (2003)
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(2012)
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Flaws

Geometry wrong
Monotonic process
Activation of every vertices
No inhibitory site
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Definition Grid G(n, p)

The random graph G(n, p) is the graph with n vertices such that each pair
of vertices share an edge with probability p and no edge with probability
1− p, independently of the other pairs.

p

1− p

deg(v) ∼ Bin(n− 1, p)

E (deg(v)) = (n− 1)p

Link
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The different phases:

Let p = c
n

1 The subcritical phase:
If c < 1, then |C1| = Op(log n).

2 The supercritical phase:
If c > 1, then |C1| = ζcn+ op(n).

3 The critical phase:
If p = 1

n

(
1 + θn−1/3

)
then |C1| = Op(n

2/3)
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Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then

A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)

2 1
n � p� 1√

n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
limn→∞ P {A∞/A0 > 1 + ε} = 0

2 1
n � p� 1√

n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n

and let A0 =
α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2

then A∞ < 1
np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2

then A∞ = n
(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)

3 p = c
n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n

then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

(Janson, Łuczak, Turova, V.)
We choose A0 vertices uniformly at random

1 p = o
(
1
n

)
then A∞ = A0

(
1 + o(1)

)
2 1

n � p� 1√
n
and let A0 =

α
np2

if α < 1
2 then A∞ < 1

np2

if α > 1
2 then A∞ = n

(
1 + o(1)

)
3 p = c

n and A0 = θ0n then A∞ = θ∞n with θ0 < θ∞ < 1

Thomas Bootstrap percolation 12 / 15



Definition Grid G(n, p)

Flaws

1 No geometrical dependencies on the probability of a link
2 Monotonic process of activation
3 Activation of almost all the vertices
4 No inhibitory vertices
5 Undirected connections
6 Static graph
7 No multiple edges
8 ...
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Definition Grid G(n, p)

BLOODY MATHEMATICIANS!!!

WHY DON’T THEY STUDY A MORE REALISTIC MODEL?

EASIER SAID THAN DONE

Van Enter, talking about results on anisotropic bootstrap percolation:

Numerically, that is for computational physicists e.g., these results are
totally discouraging. Whereas in standard bootstrap percolation to obtain a
99 % accuracy in qc the order of magnitude of a square already needs to be
of order O(103000), in the (1, 2)-model one needs to go even higher,
namely to a doubly exponential size of order O

(
1010

1400
)
. These findings

illustrate the point made, that Cellular Automata, despite being discrete in
state, space, and time, may still be ill-suited for computer simulations.
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BLOODY MATHEMATICIANS!!!

WHY DON’T THEY STUDY A MORE REALISTIC MODEL?

EASIER SAID THAN DONE

qc([n]
d, k) =

(
λ(d, k) + o(1)

log(k−1)(n)

)d−k+1

by Balogh, Bollobás, Duminil-Copin, Morris

MORE THAN 50 PAGES
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Definition Grid G(n, p)

B.P. on [n]d
Anisotropic
B.P. on [n]d

Time for
B.P. on [n]2

Slowest possible
B.P. on [n]2

Smallest possible
size A0

Monotone
cellular automata

B.P. on Galton-
Watson trees

B.P. on
regular trees B.P. on G(n, p)

B.P. on
scale free graphs

B.P. on
small world

Smallest possible
size A0

Majority B. P.

Proportional
B.P.

B.P. on
preferential
attachment
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