
Sandpiles on Epileptic Brain

Abner Rodrigues

Interunidades em Bioinformática Universidade de São Paulo

January 22, 2014

Introduction

Motivation

- Epileptic episodes are characterized by cascading process.
 - Chain reactions triggered by a small fraction of a system.
- Graphs from ictal phase shows a high number of a specific motifs.

Hypothesis

Something in the graph topology may be behind the genesis and propagation of the cascading phenomenon.

Introduction

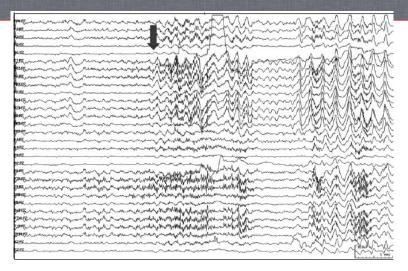


Figure: The arrow points to the start of the ictal period, where the seizures happens.

Introduction

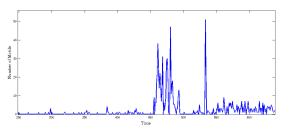


Figure: Number of motifs along time.

Figure: This kind of motif has well know synchronization features.

Objective

Goals

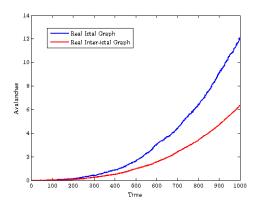
- Investigate the susceptibility of ictal graph to the genesis of cascading behavior (avalanches)
- Identify the role of the motifs on the cascading process.

Methodology

- Simulate the cascading process using a dynamic model (Sandpile) and a static model (graph)
- Comparisons between:
 - Ictal versus inter-ictal networks
 - Ictal versus randomly generated networks
- Ictal and inter-ictal graphs are calculated from the EEG signals using a Granger causality test.
 - · Directed, binary graphs

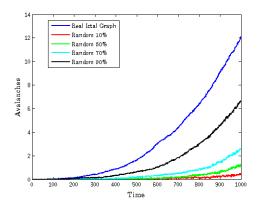
Sandpile Model

Characteristics


- Describe situations of cascading failures:
 - Breakdown of a electrical system.
 - Colapse of a communication network.
 - Unexpected epidemic spread of diseases.

Algorithm

- Each node starts with 0 "grains".
- On every iteration one grain is added to a randomly selected node
- If the number of grains is greater than a threshold, they are transferred to neighbor nodes.
- The neighbor can also overflow and initiate the cascading phenomenon.


Results

First simulation: Ictal graph \times Inter-Ictal, different number of connections.

Results

Second simulation: Ictal x Random graphs, same number of connections.

Conclusions

- Ictal networks shows higher number avalanches than inter-ictal networks.
- It is not only the number of edges that influences the genesis of avalanches.
- Random graphs that are closer to the ictal graphs shows similar number of avalanches

Next Steps

- Check others avalanches characteristics: size, duration.
- Sandpiles on other types of motifs

Thank You!