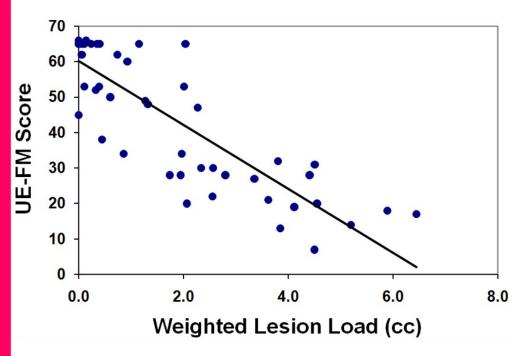


Predictors of Motor Recovery

Marcel Simis, MD Linamara Rizzo Battistella, MD, PhD. Felipe Fregni, MD, PhD, MPH.

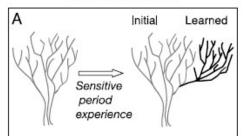
INSTITUTO DE MEDICINA FÍSICA E MEDICINA FÍSICA E MEABILITAÇÃO HC FMUSP

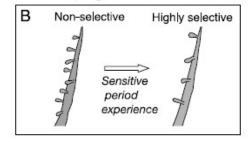
São Paulo City


Serving more than 100,000 patients per month.

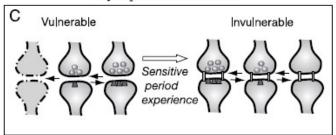
Patient	UE-FM	Lesion Size	Raw Lesion Load	Weighted Lesion Load
A	32	86.06 cm ³	2.11 cm ³	3.81 cm ³
В	62	86.64 cm ³	0.06 cm ³	0.03 cm ³
С	27	9.03 cm ³	1.72 cm ³	3.35 cm ³

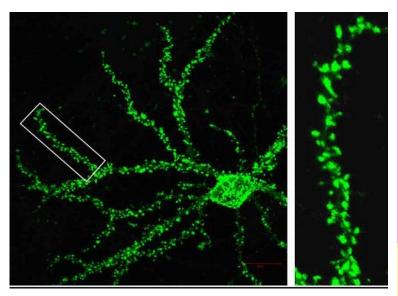
Lin L. Zhu et al., 2010




mechanisms of neuronal plasticity

Reorganization of neural networks Increase the "spines" of dendrites Changes in synaptic strength

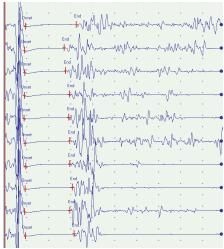

Axon elaboration

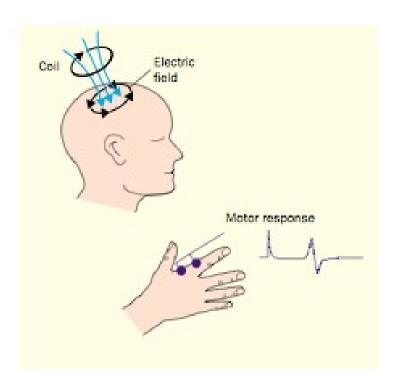


Synapse elimination

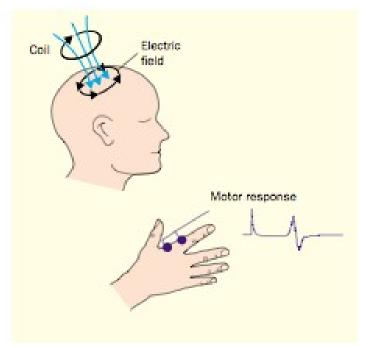
Synapse consolidation

TMS


Barker AT, et al., 1985



Motor Evoked Potential


Kobayashi M and Pascual-Leone A. THE LANCET Neurology Vol 2 March 2003

Motor threshold

 Lowest stimulus (applied in an appropriate place) capable of generating a motor evoked potential (MEP) with minimum amplitude of 50µV in at least 50% of applications



Kobayashi M and Pascual-Leone A. THE LANCET Neurology Vol 2 March 2003

Silent Period

Paired pulse

- Conditioning pulse (80% MT)
- Test pulse

(1-5 ms)

(10-15 ms)

Kobayashi M and Pascual-Leone A. THE LANCET Neurology Vol 2 March 2003

So what?

Prognosis

High motor thresholds or a complete absence of MEPs in the paretic hand after subacute stroke are associated with poorer prognosis in terms of motor recovery

Neurorehabil Neural Repair. 2010 February; 24(2): 125-135. doi:10.1177/1545968309345270.

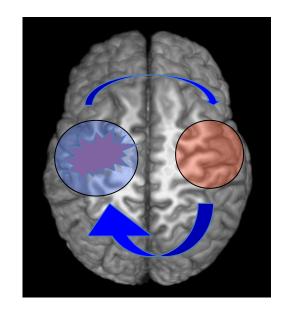
Contribution of transcranial magnetic stimulation to the understanding of mechanisms of functional recovery after stroke

Michael A. Dimyan, MD and Leonardo G. Cohen, MD Human Cortical Physiology and Stroke Neurorehabilitation Section, NINDS, NIH

Prognosis

Surrogate outcome


Efficacy of treatment


To Guide therapies

Interhemispheric Imbalance

Neuromodulation Therapies

A Sham-Controlled Trial of a 5-Day Course of Repetitive Transcranial Magnetic Stimulation of the Unaffected Hemisphere in Stroke Patients

Felipe Fregni, MD, PhD; Paulo S. Boggio, MSc; Angela C. Valle, PhD; Renata R. Rocha; Julia Duarte; Merari J.L. Ferreira; Tim Wagner, MSc; Shirley Fecteau, PhD; Sergio P. Rigonatti, MD, PhD; Marcelo Riberto, MD; Steven D. Freedman, MD, PhD; Alvaro Pascual-Leone, MD, PhD

• (Stroke . 2006;37:2115-2122.)

Neurologic recovery of stroke:

neurophysiological measurements of affected and unaffected motor cortex – a cross-sectional, multi-center individual patient data analysis study

- Marcel Simis 1, 2
- Vincenzo Di Lazzaro³
- Adam Kirton⁴
- Giovanni Pennisi⁵
- Rita Bella⁵
- Yun-Hee Kim⁶
- Naoyuki Takeuchi⁷
- Eman M Khedr⁸
- Lynn M. Rogers^{9, 10}
- Richard Harvey^{9, 10}
- Satoko Koganemaru^{11 12}
- Bulent Turman¹³
- Sultan Tarlacı¹⁴
- Rubens J. Gagliardi²
- Felipe Fregni¹

- ¹Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, US
- ²Division of Neurology, Santa Casa Medical School, Sao Paulo, Brazil
- ³Institute of Neurology, Università Campus Biomedico, Rome, Italy
- 4Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department GF Ingrassia, Section of Neurosciences, University of Catania, Italy
- Department of Physical and Rehabilitation Medicine, Stroke and Cerebrovascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- 7Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Begin and the street of Neurology, Faculty of Medicine, Assiut University Hospital, Assuit, EGYPT
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, US
 - ¹⁰Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, US
- 11Department of Brain Pathophysiology, Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- ¹²Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- ¹³School of Medicine, Bond University, Australia.
- ¹⁴Universal Special Health Hospital, Alsancak, Izmir, Turkey.

Center	Number of patients	Age Average	Age SD	%Male 46.2	
São Paulo	13	56.5	17.5		
Assiut	36	60.3	8.8	64	
Sapporo	38	61.6	10.0	60.5	
Catania	40	64.1	11.0	62.5	
Chicago	22	56.0	16.5	59.1	
Kyoto	20	56.7	9.7	60	
Rome	81	66.1	13.1	40.7	
Izmir	9	61.6	8.4	77,8	
Seoul	39	52.8	13.1	48.7	
Calgary	45	11.8	3.9	40.0	
Total	341	54.4	20.5	56.9	

Linear regression model

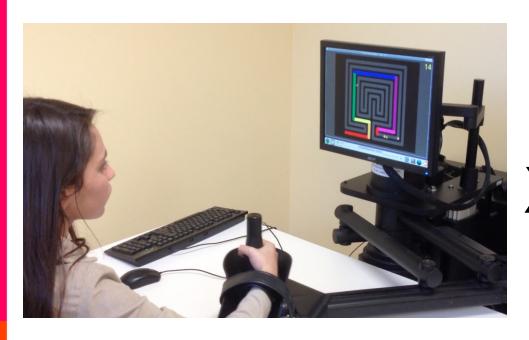
- •dependent variables:
- -Motor Threshold

•independent variables:

- -age
- -Gender
- -lesion side (right or left)
- -single stroke (yes or no),
- -time since stroke (in months),
- -stroke mechanism (ischemic or hemorrhagic)
- -site of the lesion (divided in exclusive cortical and not exclusive cortical)
- -severity of motor deficit
- -Centers with dummy variable

Final

Variables	All data		Scenario one		Scenario two		Scenario three	
	β coefficient	P value	β coefficient	P value	β coefficient	P value	β coefficient	P value
Age	-0.195	0.046	-0.171	0.081	-0.199	0.032	-0.186	0.030
Severity	13.397	0.0001	14.173	0.0001	7.24	0.0001	11.167	0.0001
Mechanism	NSU	NSU	-6.435	0.067	-5.28	0.174	NSU	NSU
Gender	NSU	NSU	NSU	NSU	NSU	NSU	2.691	0.178
Time month	-0.308	0.007	-0.297	0.007	NSU	NSU	-0.242	0.015
IMS	0.179	0.011	0.185	0.006	NSM	NSM	0.136	0.027


Limitation

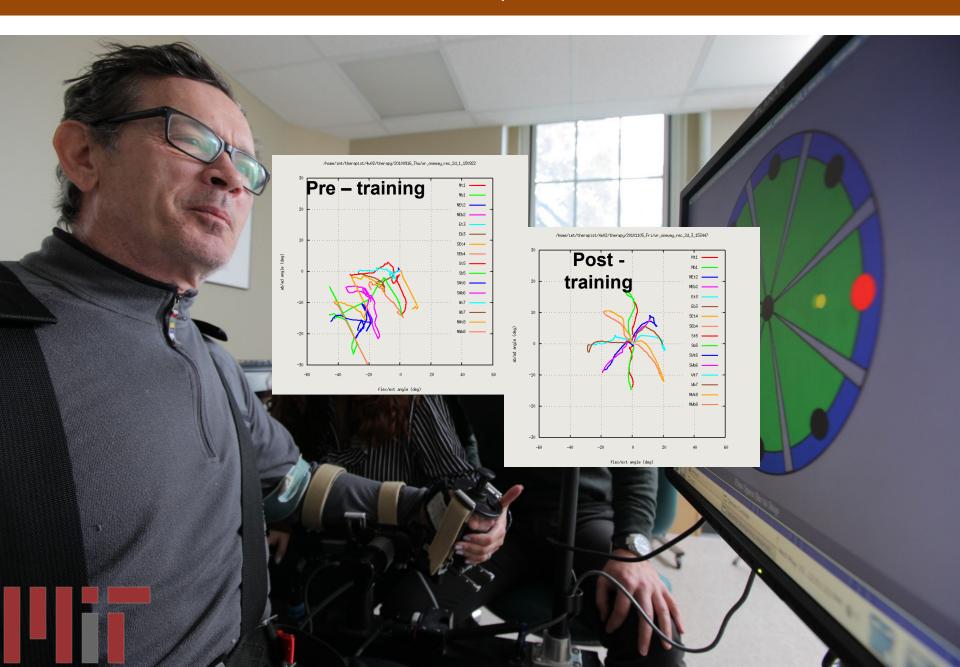
- Limited information about cortical excitability
- Just cross sectional

NARLE

"InMotion ARM™ Robot"

Constraint-induced movement therapy

Linear regression model


•dependent variables:

-Variation in Motor function

•independent variables:

- -Cortical excitability
- -EEG
- -age
- -gender
- -lesion side (right or left)
- -Number of stroke,
- -time since stroke (in months),
- -stroke mechanism (ischemic or hemorrhagic)
- -site of the lesion
- -severity of motor deficit
- -use of medications with impact on the central nervous
- -comorbidities
- -BDNF

Robotics for assessment of performance kinematics

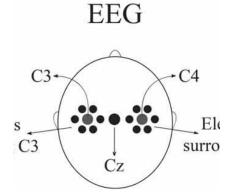
How to measure severity of motor deficit?

World Health Organization International Classification of Functioning, Disability and Health (WHO-ICF)

- Impairment
- Activity Limitations
- Participation Restrictions

psychometric properties

- -validity,
- -reliability,
- -responsiveness


Predictors of Motor Recovery

frontiers in HUMAN NEUROSCIENCE

Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation

Olivia M. Lapenta¹, Ludovico Minati², Felipe Fregni³ and Paulo S. Boggio^{1*}

- 1 Social and Cognitive Neuroscience Laboratory, Center for Healthy and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
- ² U.O. Direzione Scientifica, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
- 3 Laboratory of Neuromodulation, Harvard Medical School, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, USA

marcel.simis@hc.fm.usp.br