A cortical microcircuit model to study structure-activity relationships

Rodrigo Felipe de Oliveira Pena Prof. Dr. Antônio C. Roque

University of São Paulo - USP Ribeirão Preto

Cortical connectivity Vertical view

Figure 13. NissI stain of the visual cortex reveals the different layers I through VI quite clearly.

Neuronal variability

Morphology: pyramidal, basket, chandelier, etc

Specific electrophysiological patterns

Cortical signatures during self-sustained activity (SSA)

SSA

Subject is awake but not submitted to sensory of behavioural tasks

- Slow (< 1 Hz) and high amplitude network oscillations;
- Neurons with low firing rates
- Non-Gaussian firing rate distribution

Data from auditory cortex

(B and C) Firing rates of most neurons were low and followed a lognormal distribution.

Hromádka et al., PLoS Biology 6:e16, 2008

• Irregularity

Maimon and Assad, Neuron 62:426-440, 2009

Haider et al., Nature 493:97-102, 2013

What has been done recently?

- Classification of neuronal spiking patterns
- Improved knowledge of cortical structure
- Different hypotheses to explain cortical dynamics

Motivation

Despite growing data sets

Relation between

- Cortical activity
- Electrophysiological classes
- Cortical structure

is poorly understood

It is important to have a model that reproduces **all** of the structuredactivity of the cortex

1st NeuroMat young researchers workshop

Laboratory of Neural Systems (SisNe) - sisne.org

Methods

Model

Integrated connectivity map (Potjans and Diesmann, 2014)

Only connections with probabilities >0.04 are shown

Methods

Building the model

- 4000 Neurons 80% excitatory and 20% inhibitory
- Divide them proportionally into layers
- Connect following wiring rule

Spatial location

- Cell's spatial location is determined by it's layer
- Assume maximum delay is set to 10ms

Connectivity

from

		L23e	L23i	L4e	L4i	L5e	L5i	L6e	L6i
to	L23e	0.101	0.169	0.044	0.082	0.032	0	0.008	0
	L23i	0.135	0.137	0.032	0.052	0.075	0	0.004	0
	L4e	0.008	0.006	0.050	0.135	0.007	0.0003	0.045	0
	L4i	0.069	0.003	0.079	0.160	0.003	0	0.106	0
	L5e	0.100	0.062	0.051	0.006	0.083	0.373	0.020	0
	L5i	0.055	0.027	0.026	0.002	0.060	0.316	0.009	0
	L6e	0.016	0.007	0.021	0.017	0.057	0.020	0.040	0.255
	L6i	0.036	0.001	0.003	0.001	0.028	0.008	0.066	0.144

Methods

Stimuli

Scenario A

- in vivo
- cortico-cortical connections
- background input v=8Hz (poisson fixed rate)
- thalamic connections
- thalamic input v=15Hz (poisson fixed rate) (L4 and L6)

Scenario B

- deafferentation
- turn off thalamic input
- only background input *v*=8Hz

Methods

Measurements

- 1. Spike trains, membrane voltages
- 2. Individual and Mean population frequencies
- 3. ISI (interspike interval) Time interval between spikes.
- 4. CV (coefficient of variation of a neuron's ISIs) Ratio of standard deviation to the mean.
 (Gabbiani and Koch, 1998; Dayan and Abbott, 2001; Laing and Lord, 2009)

5. Synchrony - Normalized to be between 0 and 1. (Golomb et. al., 2001)

$$\chi^2(N) = \frac{\sigma_V^2}{\frac{1}{N} \sum_{i=1}^N \sigma_{V_i}^2}$$

 $CV_i = \frac{\sigma_{\mathrm{ISI}_i}}{\overline{\mathrm{ISI}}_i}$

Results

Scenario A

Experiment: Parameter search

- We look for (cortical signatures):
- Collective low spiking frequency (< 1 Hz)
- Irregularity in the individual neuronal spikes
- Asynchronous activity
- Large sub-threshold fluctuations

Simulation Parameters

T_{simulation} = 1000 ms 30 different seeds

$$g_{ex}\epsilon[1;10]$$

 $g_{in} \epsilon [1; 20]$

 $\Delta q_{ex} = 1$ and $\Delta q_{in} = 1$

1st NeuroMat young researchers workshop

Laboratory of Neural Systems (SisNe) - sisne.org

1st NeuroMat young researchers workshop

Laboratory of Neural Systems (SisNe) - sisne.org

Results

$$(g_{ex} = 4, g_{in} = 15)$$

Results $(g_{ex} = 4, g_{in} = 15)$ Thalamic input is turned off at 500 ms

Scenario A X Scenario B

 Similar to 'UP' and 'DOWN' states (two preferable subthreshold states during anesthesia)

Steriade et al., (1993); Sanchez-Vives et al., (2000)

Summary and Conclusions

- Model of local cortical network shows realistic behavior
- Agreement with experimental recordings
- The model is being used to study structure-activity relationships
- NeuroMat members may use the model as a toy model

References

- Binzegger, T., Douglas, R. J., & Martin, K. A. (2004).
- Brette et al., (2007).
- Brunel N., (2000).
- (Dayan and Abbott, 2001)
- Douglas and Martin, (2004).
- Gabbiani and Koch, 1998;
- (Golomb et. al., 2001)
- Izhikevich, E. M. (2003).

- Izhikevich, E. M., & Edelman, G. M. (2008).
- Laing and Lord, 2009
- Mountcastle, V. B. (1997).
- Potjans, T. C., & Diesmann, M. (2014).
- Sanchez-Vives et al., (2000)
- Steriade et al., (1993);
- Wester and Contreras (2012).

Acknowledgements

- FAPESP/CEPID/Neuromat (grant 2013/07699-0).
- FAPESP 2013/25667-8.
- Using resources of the LCCA-Laboratory of Advanced Scientific Computation of the University of São Paulo.

Thank you very much!

Rodrigo F. O. Pena - <u>rodrigo.pena@usp.br</u>

Laboratory of Neural Systems (SisNe) - sisne.org