A continuous time stochastic model for biological neural nets

Leonardo Nagami Coregliano IME – Universidade de São Paulo This work was partially supported by CAPES and FAPESP grant no. 2013/23720-9

Our main goals

- To model mathematically a biological neural net as a continuous time stochastic process (to extend a model by Galves & Löcherbach (2013) from discrete time to continuous time);
 - Has been done by Duarte & Ost (2014).
- To study this model.
 - Does the system "die"?
 - How does the system "die"?

Our approach (our subgoal)

- To produce a model that can be easily simulated.
 - Stochastic differential equation (Duarte & Ost) approach does not work;
 - Adapt the discrete time model to continuous time by adapting one of its simulation algorithms to continuous time;
 - Downside: our model is not as general;
 - Upside: model's existence comes for free.

The model

- Finite set of neurons I;
- At time t, each neuron i has a membrane potential U_t(i);
- Each neuron *i* has a potential probability function φ_i : the probability of *i* firing between time *t* and t + dt is $\varphi_i(U_t(i)) dt$;
- Matrix of influences W: every time a neuron i fires, the potentials of all neurons are adjusted:
 - Neuron $j \neq i: U_t(j) \rightarrow U_t(j) + W_{i \rightarrow j}$
 - Neuron *i*: $U_t(i) \rightarrow 0$
- Each neuron *i* has a potential decay function V_i: Without neuron discharges, after *s* time has passed, the potential goes from *u* to V_i(*u*, *s*).

The model must make sense...

- Mathematically:
 - Integrability conditions.
- Biologically:
 - Non-negative potentials $U_t(i)$;
 - Non-decreasing potential probability functions φ_i ;
 - Decay function V_i(u, s) non-decreasing in u and nonincreasing in s.
- Philosophically:
 - Interruption conditions on $V_i(u, s)$.

The simulation algorithm

- Instead of computing whether a neuron fires or not, we compute the waiting time for it to fire;
 - Involves calculating the inverse of a cumulative distribution function.

Potential	Waiting time	
<u> </u>		
3.3	2	
7.2	1.5	
4.9	5	
0	∞	
3.2	∞	

The simulation algorithm

- Instead of computing whether a neuron fires or not, we compute the waiting time for it to fire;
 - Involves calculating the inverse of a cumulative distribution function.

Potential	Waiting time	Potential	Potential
$\underline{\text{Time } t = 3}$		Time	<u> </u>
3.3	2	0.825	1.825
7.2	1.5	1.8	0
4.9	5	1.225	2.225
0	∞	0	1
3.2	∞	0.8	1.8

Studying the model

- System death: no neuron discharges after a certain time t.
- Question: does the system die in finite time?
 - Conjecture: it depends...
 - On the relation potential decay vs. probability potential;
 - On the influences between the neurons (both values and structure).
- Question: what is the distribution of the time of death (time of last discharge)?
 - Conjecture: it depends...
 - On the relation potential decay vs. probability potential;
 - On the influences between the neurons (both values and structure).

A theorem on system death

Hypotheses:

- Non-negative influences $W_{i \rightarrow j} \ge 0$;
- Positive initial potentials $U_0(i) > 0$;
- [...].
- Two types of neurons:
 - Healthy: if it has potential, it fires in finite time;
 - Sick: even if it has potential, the waiting time may be infinite.

$$\forall u, \int_0^\infty \varphi_i(V_i(u, s)) \, ds < \infty \Leftrightarrow \text{Sick}$$

A theorem on system death

- The system dies in finite time with positive probability if and only if there is no cycle on the healthy neurons.
- Furthermore, if the system dies in finite time with positive probability, then it dies in finite time with probability one.

Future directions

- Distribution of time of system death;
- What about negative influences $W_{i \rightarrow j}$?
- Distribution of potentials;
- Number of discharges until system death;
- Invariant probability measures in the case the system does not die.

Thank you!