Previous work

Analysis of reaction time during pattern learning

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

May 5, 2015

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000

< 🗇 🕨

э

Outline

- Hick's Law
- SRT Task

2 Previous work

- Methods
- Results

3 Work in Progress

- Distinct probabilities
- Hypothesis

Introduction	Previous work	Work in Progress
• 000 000	000 0000	000000
Hick's Law		

< 🗇 > < 🖃 >

э

3

Outline

Previous work

- Methods
- Results
- 3 Work in Progress
 - Distinct probabilities
 - Hypothesis

Introduction	Previous work	Work in Progress
0 ● 00 000	000 0000	000000 0000000
Hick's Law		

Equiprobable choices

- Simple choices are faster than complex ones
- What matters is the number of possibilities η
- $\bullet\,$ Reaction time increases logarithmically with η

$$T = b.log_2(\eta + 1)$$

э

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000
Hick's Law		

Unequal probabilities

- Can be generalized using the Entropy H
- Reaction time increases linearly with H

$$\mathcal{T} = b \mathcal{H}$$
 $\mathcal{H} = \sum_{i}^{\eta} p_i log_2(rac{1}{p_i} + 1)$

∃ >

3

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
000 ● 000	000 0000	000000
Hick's Law		

< (1) > < (2) > <

3

- There is no upper bound for reaction time
- It takes no account of the learning process

Introduction	Previous work	Work in Progress
○○○○	ooo	000000
●○○	oooo	00000000
SRT Task		

< 🗇 > < 🖃 >

э

3

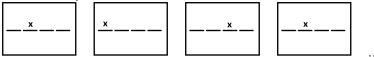
Outline

SRT Task

2) Previous work

- Methods
- Results
- 3 Work in Progress
 - Distinct probabilities
 - Hypothesis

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000
SRT Task		


The reaction time is the time between the marking on the screen and the pressing of the correct button.

◆ 同 → → (三 →

글 🖒 🛛 글

Introduction	Previous work	Work in Progress
000	0000	0000000
SRT Task		

If we let a sequence be fixed as S=213, the first events would be:

ъ.

・ロト ・四ト ・ヨト ・ヨト

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000	• 00 0000	000000
Methods		

▲御 ▶ ▲ 臣 ▶

э

3

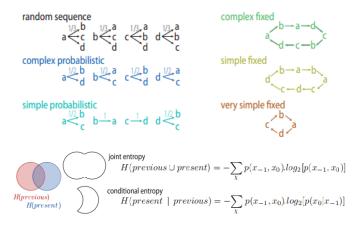
Outline

2 Previous work• Methods

- Results
- 3 Work in Progress
 - Distinct probabilities
 - Hypothesis

э

3


- Testing sigmoidal fits to compare with Hick's linear
- Using simple sequences to see learning

Previous work

Work in Progress

3

(日) (同) (三) (三)

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000	000	000000
	0000	
Results		

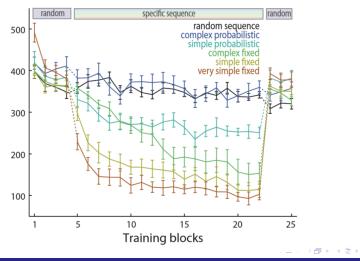
▲御 ▶ ▲ 臣 ▶

э

3

Outline

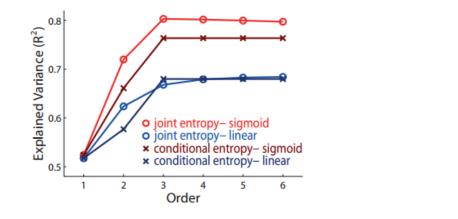
2 Previous work


- Methods
- Results
- 3 Work in Progress
 - Distinct probabilities
 - Hypothesis

Introduction 0000 000	Previous work ○○○ ○●○○	Work in Progress
Results		

æ

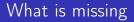
Э


Learning

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000		000000
Results		

Sigmoidal fits better



< 17 ▶

3

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000	000 000●	000000
Results		

- The sigmoidal entropy fit explains the variance, but still doesn't explain the learning process.
- Is reaction time the same on events with distinct probabilities from the same source?

A (1) > A (1) > A

3

Introduction	Previous work	Work in Progress
0000 000	000 0000	• 00000 00000000
Distinct probabilities		

< 🗇 🕨

< ∃ >

3

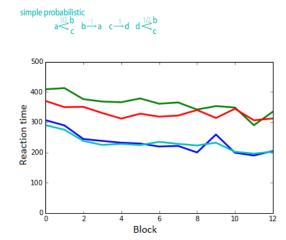
Outline

Previous work

- Methods
- Results
- Work in Progress
 Distinct probabilities
 Hypothesis

Introduction 0000 000 Previous work

Work in Progress


A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

3

Distinct probabilities

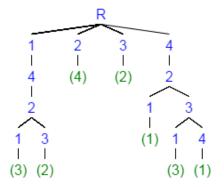
Simple probabilistic sequence

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

3

(日) (同) (三) (三)

Distinct probabilities


- Reaction time strongly differs throughout same sequence's distinct events
- Can we use context trees? Will depth explain reaction time?

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000 00000000
Distinct probabilities		

◆□ > ◆□ > ◆豆 > ◆豆 >

æ -

1241324324

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000 00000000
Distinct probabilities		

(日) (四) (王) (王)

ъ.

• Will depth explain reaction time?

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000 00000000
Distinct probabilities		

(日) (四) (王) (王)

ъ.

• Will depth explain reaction time? Not at all.

Introduction	Previous work	Work in Progress
		000000
000	0000	•0000000
Hypothesis		

< 🗇 🕨

< ∃ >

3

Outline

Previous work

- Methods
- Results

3 Work in Progress

- Distinct probabilities
- Hypothesis

A B > A B >

э

3

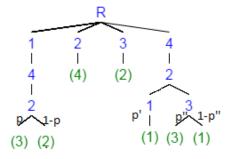
- We may use context trees, but subject-made (Rissanen)
- The tree should be updated during learning

Introduction	Previous work	Work in Progress
0000	000	000000
000	0000	0000000
Hypothesis		

2

.≣. ►

イロト イヨト イヨト


Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
		000000
000	0000	0000000
Hypothesis		

・ロト ・日下・ ・ ヨト

문어 문

Late Learning

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
000	0000	00000000
Hypothesis		

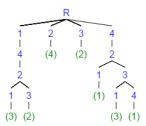
• The probabilities of the roots could explain intra-sequence variance (?)

・ロト ・回ト ・ヨト ・

э

3

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000 00000000
Hypothesis		


Ξ.

Э

< 🗗 🕨

• Upper levels must be considered

Estevão Uyra Pardillos Vieira Advisor: André Frazão Helene

Introduction	Previous work	Work in Progress
0000	000	
Hypothesis		

< 🗇 🕨

э

3

- Upper levels must be considered
- Learning rate changes with subject

Introduction	Previous work	Work in Progress
0000 000	000 0000	000000 0000000●
Hypothesis		

- Rissanen, J., A universal data compression system, IEEE Trans. Inform. Theory 29, Number 5, 656–664, 1983.
- Pavão R, Savietto JP, Sato JR, Xavier GF, Helene AF. Entropy and probability measures describe sequence learning performance
- Shannon, C. (1948) A mathematical theory of communication. Bel I System Tech. J. 27, 379–423.

A (1) > A (1) > A