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Introduction and Motivation

@ Extracellular recordings of brain activity can contain spikes from more
than one neuron.

@ What we like to do is to distinguish spikes from distinct neurons. This
is what we call spike-sorting.

@ One way to do sorting is use the shape of waveforms collected with
the electrodes.

@ For 50 years or more people have been doing “reasonable”sorting
using only waveform of individual spikes;
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@ In Pouzat, et al (2004) they proposed to do spike-sorting using both
the spike amplitudes information and the intervals of time between
spikes from same neuron.
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@ In Pouzat, et al (2004) they proposed to do spike-sorting using both
the spike amplitudes information and the intervals of time between

spikes from same neuron.

@ They didn't include interactions between neurons.
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@ We are considering a more realist model based on Galves &
Locherbach (2013).
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@ We are considering a more realist model based on Galves &
Locherbach (2013).

@ We want to do statistical model selection to perform spike sorting
using only the spike times.
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@ Suppose that we have only the times until the next spike.
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Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

|

2

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

/N

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

134321

Bruno Monte de Castro 5 de maio de 2015 9/12



@ Suppose that we have only the times until the next spike.

@ We want to know what is the most likely sequence of neurons that
originated each spike.

@ Metropolis-Hasting algorithm

Example with 4 neurons

131321
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We estimate the probability for each spike to originate from each neuron.

For instance, if we discard the first V; iterations, the probability of the
20th spike to have been generated by the third neuron is:

V¢
1
PV =3D)~ 5y X Ly
v=V;

where V¥ is the total of iterations and D is a sample of times until next
spike.
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The End
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