Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000000	00

Andressa Cerqueira, Claudia Vargas, Daniel Fraiman, Florencia Leonardi

First Young Researchers Workshop

São Paulo, 05 de Maio de 2015

Main goal	Hypotheses test	Simulation	EEG Data	References
●	0000000	00	000000	00

Main Goal

- The construction of a non parametric hypotheses test for samples of graphs;
- Application of this test to analyse brain functional networks constructed from electroencephalographic (EEG) data.

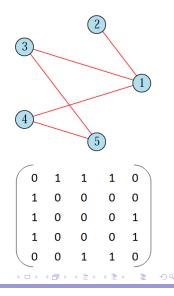
伺 と く ヨ と く ヨ と

Main goal	Hypotheses test	Simulation	EEG Data	References
O	•000000	00	000000	00

Graph

- A simple graph is a pair (V, E), where V is a finite set of vertices and E ⊆ V × V is a set of edges;
- The graph can be represented by its adjacency matrix, where

$$g_{ij} = \left\{ egin{array}{ll} 1, & ext{if there is an edge} \\ & ext{between } i ext{ and } j \\ 0, & ext{otherwise} \end{array}
ight.$$



Main goal	Hypotheses test	Simulation	EEG Data	References
O	○●○○○○○○	00	000000	00

Hypotheses test. Given two samples of graphs $\mathbf{g} = (g_1, \ldots, g_n)$ and $\mathbf{g}' = (g_1', \ldots, g_m')$, we want to test if they were originated from the same probability distribution, that is

$$\left(\begin{array}{c} \mathbf{H}_{0}: \pi = \pi' \\ \mathbf{H}_{A}: \pi \neq \pi' \end{array}\right)$$

where π is the distribution which originated **g** and π' is the distribution which originated **g**'.

Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000000	00

Definition

Given two samples of graphs $\mathbf{g} = (g_1, \ldots, g_n)$ and $\mathbf{g}' = (g'_1, \ldots, g'_m)$ we define the two-samples test statistic by

$$T(\mathbf{g},\mathbf{g}') = \max_{g \in \mathbb{G}(v)} |\overline{D}_{\mathbf{g}}(g) - \overline{D}_{\mathbf{g}'}(g)| \; ,$$

ヘロマ 人間マ ヘヨマ ヘロマ

where
$$\overline{D}_{\mathbf{g}}(g) = \frac{1}{n} \sum_{k=1}^{n} D(g, g_k)$$
 and $D(g, g_k) = \sum_{i < j} (g_{ij} - g_{ij}^k)^2$.

Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000000	00

The critical region of the test is

$$\mathbf{R} = \{t : t(\mathbf{g}, \mathbf{g}') > q_{(1-\alpha)}\},\$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

where $q_{(1-\alpha)}$ is the $(1-\alpha)$ -quantile of the distribution of T under the null hypothesis (H₀).

Remark: $t \in R \Rightarrow$ we reject H_0

Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000000	00

It is important to remark that

- We need to know the set $\mathbb{G}(V)$ to compute T;
- The set $\mathbb{G}(V)$ has $2^{\binom{|V|}{2}}$ graphs;
- If |V| = 20, then $|\mathbb{G}(V)| = 2^{190}$ this is extremely LARGE !!!

How do we compute T ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Main goal O	Hypotheses test 00000●00	Simulation 00	EEG Data 000000	References

Proposition

Given two samples of graphs $\mathbf{g} = (g_1, \ldots, g_n)$ and $\mathbf{g}' = (g_1', \ldots, g_m')$ we have that

$$\mathcal{T}(\mathbf{g},\mathbf{g}') = \sum_{i < j} |\overline{\mathbf{g}}_{ij} - \overline{\mathbf{g}}'_{ij}| \; ,$$

◆□> ◆□> ◆三> ◆三> ● 三 のへの

where

$$\overline{\mathbf{g}}_{ij} = \frac{1}{n} \sum_{k=1}^{n} g_{ij}^{k}.$$

Main goal O	Hypotheses test 000000●0	Simulation 00	EEG Data 000000	References 00

► To compute the critical region of the statistical test we need to know the distribution of *T*.

What is the distribution of T?

theses test	Simulation	EEG Data	References
⊃000●	00	000000	00

Proposition

Let two samples of graphs $\mathbf{g} = (g_1, \dots, g_n)$ and $\mathbf{g}' = (g'_1, \dots, g'_m)$. Under the null hypothesis H_0 we have

$$\mathcal{T}(\mathbf{g},\mathbf{g}') = \sum_{i < j} |\mathcal{T}_{ij}|$$

$$\sqrt{\left(\frac{nm}{n+m}\right)(T_{ij})_{ij}} \xrightarrow[m \to \infty]{D} N(0,\Sigma)$$

where
$$\Sigma_{ij,kl} = \pi G_{ij,kl} - (\pi G_{ij})(\pi G_{kl})$$
 and $\pi G_{ij,kl} = \sum_{g \in \mathbb{G}(v)} g_{ij}g_{kl}\pi(g)$.

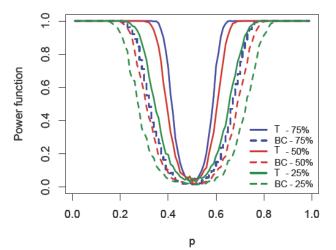
・ 同 ト ・ ヨ ト ・ ヨ ト

Main goal	Hypotheses test	Simulation	EEG Data	References
0	0000000	•0	000000	00

Simulation

We compared the power function of our test with the power function of the simultaneous testing procedure with Bonferroni correction (BC). The null model is the Erdös-Rényi model with parameter $p_0 =$ 0.5 and the alternative hypothesis is (modified) Erdös-Rényi model with v = 10 nodes and q% of edges with parameter p and the remaining edges with parameter $p_0 = 0.5$. The sample size was n=20.

Main goal	Hypotheses test	Simulation	EEG Data	References
o	00000000	○●	000000	00



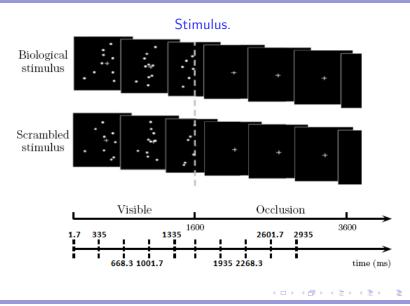
▲□▶▲□▶▲目▶▲目▶ 目 めんぐ

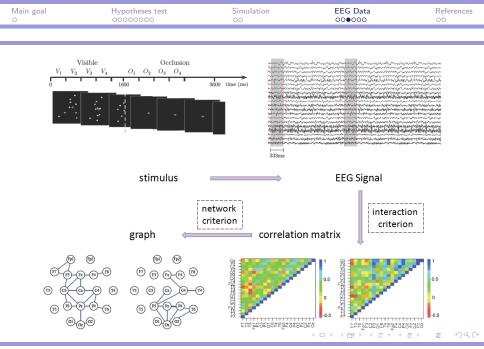
Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	●00000	00

Discrimination of EEG brain networks.

We want to compare graphs built from EEG data collected during the observation of videos depicting human locomotion.

Main goal	Hypotheses test	Simulation	EEG Data	References
O	0000000	00	0€0000	





Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000€00	00

Visible x Occlusion

- Biological movement

 - visible: 132 graphs for each window occlusion: 132 graphs for each window
- Non-Biological Movement

 - visible: 132 graphs for each window occlusion: 137 graphs for each window
- p-value of the test

Visible vs Occlusion	Windows				
	V_1 vs O_1	V_2 vs O_2	V_3 vs O_3	V ₄ vs O ₄	
Biological	0.0019	0.4294	0.1984	0.0278	
Non-biological	0.0016	0.8278	0.1249	0.6673	

Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	0000€0	00

Our paper: A test of hypotheses for random graph distributions built from EEG data.

http://arxiv.org/abs/1504.06478

- * ロ * * 御 * * 臣 * * 臣 * 「臣 * のへで

Main goal O	Hypotheses test	Simulation 00	EEG Data 00000●	References

Acknowledgments

modelagem estocástica e complexidade

- ▲日 > ▲国 > ▲国 > ▲国 > ▲日 >

00	C	000000	0
	00	00	00 000000

References

E. Bullmore e O. Sporns.

Complex brain networks: graph theoretical analysis of structural and functional systems.

Nat Rev Neurosci, 10:186–198.

J. R. Busch, P. A. Ferrari, A. G. Flesia, R. Fraiman, S. P. Grynberg e F. G. Leonardi.

Testing statistical hypothesis on random trees and applications to the protein classification problem.

The Annals of Applied Statistics, 3(2):542–563.

D. Fraiman, G. Saunier, E. F. Martins, e C. D. Vargas. Biological motion coding in the brain: analysis of visually-driven eeg funcional networks.

Plos One. No prelo 2014.

Main goal	Hypotheses test	Simulation	EEG Data	References
O		00	000000	○●

References

M. E. J. Newman.

Networks: An Introduction.

Oxford University Press.

 G. Saunier, E. F. Martins, E. C. Dias, J. M. de Oliveira, Thierry Pozzo e Claudia D. Vargas.
 Electrophysiological correlates of biological motion permanence in humans.

Behavioural Brain Research, 236:166–174.